AP Calculus AB

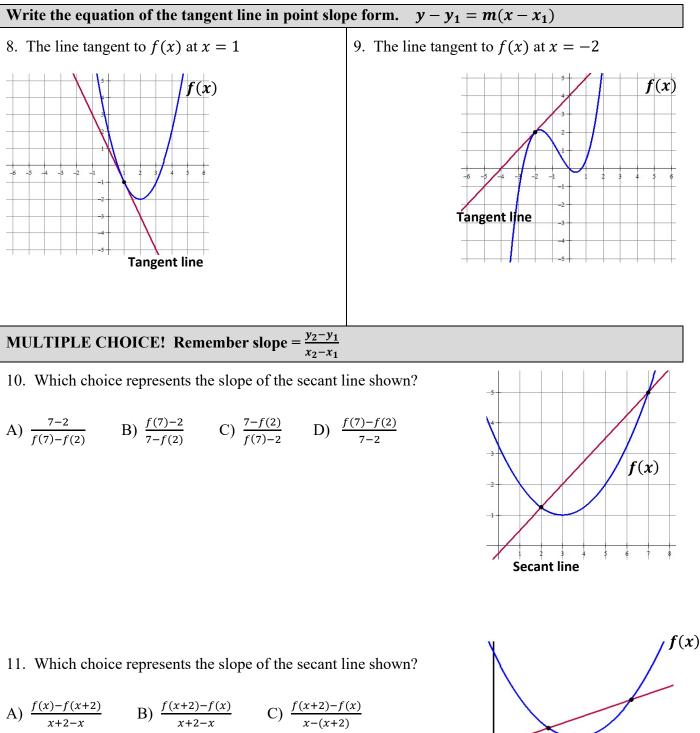
Directions:

- 1. This packet is to be handed in to your AP Calculus teacher on the first day of school.
- 2. All work must be shown on the packet OR on notebook paper attached to the packet.
- 3. A test on the unit circle will be given on the first day of school.

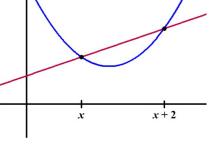
Answers to the odd problems can be found at the end of the packet. No work = no credit.

Name: ______

Calculus - SUMMER PACKET

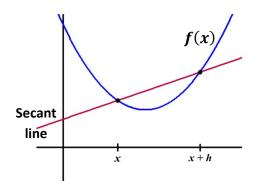

Summer + Math = $(Best Summer Ever)^2$

NO CALCULATOR!!!


Given $f(x) = x^2 - 2x + 5$, find the following.		
1. $f(-2) =$	2. $f(x+2) =$	3. $f(x+h) =$
Use the graph $f(x)$ to answer the	e following.	
4. $f(0) =$	f(4) =	f(x)
f(-1) =	f(-2) =	
f(2) =	<i>f</i> (3) =	
f(x) = 2 when $x = ?$	f(x) = -3 when $x = ?$	

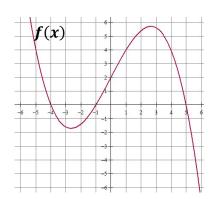
Write the equation of the line meets the following conditions. Use point-slope form. $y - y_1 = m(x - x_1)$

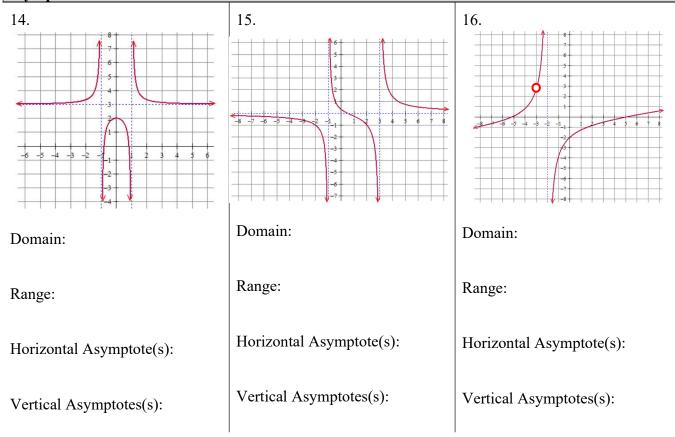
5. slope = 3 and $(4, -2)$	6. $m = -\frac{3}{2}$ and $f(-5) = 7$	7. $f(4) = -8$ and $f(-3) = 12$	



D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line


- 12. Which choice represents the slope of the secant line shown?
 - A) $\frac{f(x+h)-f(x)}{x-(x+h)}$ B) $\frac{x-(x+h)}{f(x+h)-f(x)}$ C) $\frac{f(x+h)-f(x)}{x+h-x}$ $\frac{f(x) - f(x+h)}{x+h-x}$


- 13. Which of the following statements about the function f(x) is true?
 - I. f(2) = 0II. (x + 4) is a factor of f(x)III. f(5) = f(-1)
 - (A) I only

D)

- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

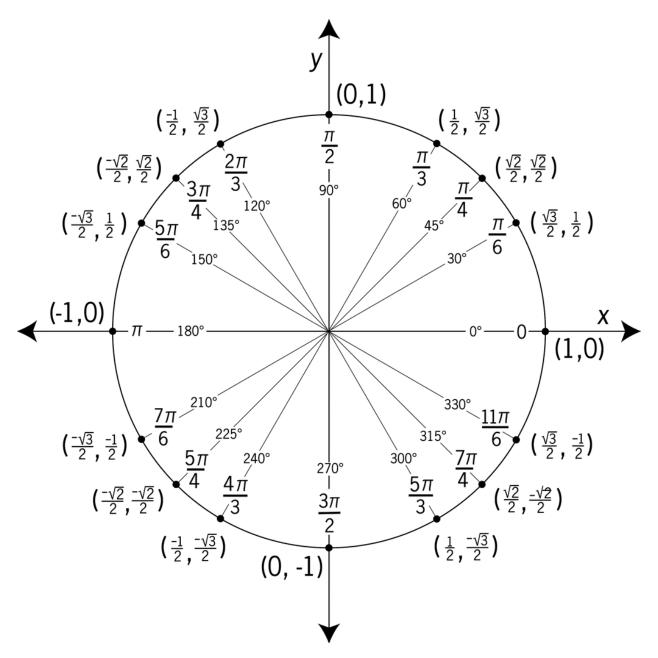
MULTIPLE CHOICE!

- 17. Which of the following functions has a vertical asymptote at x = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2 16}{x 4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$

 - (E) None of the above

18. Consider the function: $(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$. Which of the following statements is true?

- I. f(x) has a vertical asymptote of x = 2
- II. f(x) has a vertical asymptote of x = -2
- III. f(x) has a horizontal asymptote of y = 1
- (A) I only
- (B) II only
- (C) I and III only
- (D) II and III only
- (E) I, II and III


Rewrite the following using rational exponents. Example: $\frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$		
19. $\sqrt[5]{x^3} + \sqrt[5]{2x}$	20. $\sqrt{x+1}$	21. $\frac{1}{\sqrt{x+1}}$
22. $\frac{1}{\sqrt{x}} - \frac{2}{x}$	23. $\frac{1}{4x^3} + \frac{1}{2}\sqrt[4]{x^3}$	$24. \ \frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$
Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$		
25. $x^{-\frac{1}{2}} - x^{\frac{3}{2}}$	26. $\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$	27. $3x^{-\frac{1}{2}}$
28. $(x+4)^{-\frac{1}{2}}$	29. $x^{-2} + x^{\frac{1}{2}}$	30. $2x^{-2} + \frac{3}{2}x^{-1}$

Need to know basic trig functions in RADIANS! We never use degrees. You can either use the Unit Circle or Special Triangles to find the following.		
31. $\sin \frac{\pi}{6}$	32. $\cos \frac{\pi}{4}$	33. $\sin 2\pi$
34. $\tan \pi$	35. $\sec \frac{\pi}{2}$	36. $\cos \frac{\pi}{6}$
37. $\sin \frac{\pi}{3}$	38. $\sin \frac{3\pi}{2}$	39. $\tan\frac{\pi}{4}$
40. $\csc \frac{\pi}{2}$	41. sin <i>π</i>	42. $\cos \frac{\pi}{3}$
43. Find <i>x</i> where $0 \le x \le 2\pi$,	44. Find x where $0 \le x \le 2\pi$,	45. Find <i>x</i> where $0 \le x \le 2\pi$,
$\sin x = \frac{1}{2}$	$\tan x = 0$	$\cos x = -1$
Solve the following equations. R	Remember $e^0 = 1$ and $\ln 1 = 0$.	
46. $e^x + 1 = 2$	47. $3e^x + 5 = 8$	48. $e^{2x} = 1$
49. $\ln x = 0$	50. $3 - \ln x = 3$	51. $\ln(3x) = 0$
52. $x^2 - 3x = 0$	53. $e^x + xe^x = 0$	54. $e^{2x} - e^x = 0$

Solve the following trig equations where $0 \le x \le 2\pi$.			
55. $\sin x = \frac{1}{2}$	56. $\cos x = -1$	57. $\cos x = \frac{\sqrt{3}}{2}$	
-		Ζ	
58. $2\sin x = -1$	59. $\cos x = \frac{\sqrt{2}}{2}$	$60. \ \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$	
61. $\tan x = 0$	62. $\sin(2x) = 1$	63. $\sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$	
		(4) 2	
For each function, determine its	domain and range.		
For each function, determine its <u>Function</u>	domain and range. <u>Domain</u>	Range	
		Range	
<u>Function</u>		Range	
$Function$ 64. $y = \sqrt{x - 4}$		Range	
Function 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$		Range	
Function 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$		Range	
Function64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$ Simplify.	Domain		
Function 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$		Range 71. e ^{1+ln x}	
Function64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$ Simplify.	Domain		
Function64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$ Simplify.	Domain		

72. ln 1	73. $\ln e^7$		74. $\log_3 \frac{1}{3}$
75. log _{1/2} 8	76. $\ln \frac{1}{2}$		77. $27^{\frac{2}{3}}$
78. $(5a^{2/3})(4a^{3/2})$	79. $\frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$		80. $(4a^{5/3})^{3/2}$
If $f(x) = \{(3,5), (2,4), (1,7)\}$ $h(x) = \{(3,2), (4,3), (1,6)\}$ 81. $(f+h)(1)$	$g(x) = \sqrt{x} - \frac{k(x) = x^2 + \frac{k(x) = x^2 + \frac{k(x) = x^2}{2}}{82. (k - g)(5)}$	- 3 , then determ	hine each of the following. 83. $f(h(3))$
84. $g(k(7))$	85. h(3)		86. $g(g(9))$
87. $f^{-1}(4)$		88. $k^{-1}(x)$	
89. $k(g(x))$		90. g(f(2))	

Must COMPLETELY memorize every part of the unit circle. Test on first day of class. Add 360° and 2Π to under 0° and 0.

AP Calc Summer Math Solutions (ODDS)

13 $x^{2}+2xh+h^{2}-2x-2h+5$ $x^{2}-2(x-4)$ y+2=3(x-4)y-1a=-20(x+3) OR y+8=-20(x-4)y-2=(x+2) 9) 1) B 13) E 15) Domain: $(-\infty, -1) \cup (-1, 3) \cup (3, \infty)$ Pange: $(-\infty, \infty)$ HA: y=0VA: x=-1, x=3 $\begin{array}{c}
(17) \\
19) \\
19) \\
\chi^{\frac{3}{5}} + (2\chi)^{\frac{1}{5}} \\
21) \\
(\chi+1)^{-1/2}
\end{array}$ $\frac{23}{4} + \frac{1}{2} \times \frac{34}{2} + \frac{1}{2} \times \frac{34}{2}$ $\frac{25}{\sqrt{\chi}} - \sqrt{\chi^3}$ 27) <u>3</u> 29) 72 + VX

1/2 3333 69) undefined V3 2 1 0 IL and 517. 6 39) 41) 43) 45 TT 13 14 2 2 2+2 X+2 MT. $\chi = C$ 49) X=1 $(51) \chi = \frac{1}{7}$ 53) $\chi = -1$ 55) $\chi = \frac{\pi}{6}$ and $\frac{5\pi}{6}$ 57) $\chi = \frac{\pi}{6}$ and $\frac{11\pi}{6}$ 59) X=II and II (e) $\chi = 0, \pi, 2\pi$ x=417 and 811. (5) Dom: TR Range: $y \ge 0$ (0, ∞) (J) Don: The Range: y>0 (0,00) (-00,00)